Notesheet - Systems of Equations Circles and Lines

Definition of a system of equations:

Example of a linear system

\[y = x + 1 \quad \text{and} \quad y = -3x + 9 \]

Today we will look at systems involving a circle and a line

Systems of Equations Involving a Circle and a Line

Solving a system with a circle and a line is very similar to solving a linear system. While a few different methods can be used to solve a linear system, we will be focusing on the **Substitution Method** in this case. Our goal is to identify the ordered pairs which mark any intersection of a given circle and a line. Here are three types of situations.
The Substitution Method for a System Involving a Circle and a Line

Step 1: Solve the linear equation for \(y \). Solving for \(y \) is the same as getting the equation into slope-intercept form.
Note: If the equation is of the form, \(x = a \), substitute the value of \(x \) into the circle equation to find your point(s).

Step 2: Substitute the value for \(y \) into the circle equation and solve for \(x \). Use either factoring or the quadratic formula to solve. The quadratic formula is:

\[
given \ ax^2 + bx + c = 0, \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad \text{for all values } a \neq 0.
\]

Step 3: Substitute the value(s) for \(x \) back into the linear equation and solve for \(y \).

Step 4: Check your solution(s) by substituting your point(s) in both given equations.

Example 1 Solve the following system of a circle and a line by finding the intersection points algebraically.

\[
\begin{align*}
 y &= 3x - 30 \\
 x^2 + y^2 &= 100
\end{align*}
\]
Practice:

1. \[
\begin{align*}
 y &= 3x - 5 \\
 x^2 + y^2 &= 25
\end{align*}
\]

2. \[
\begin{align*}
 2x + y &= 15 \\
 (x - 2)^2 + (y - 1)^2 &= 25
\end{align*}
\]
3. \[\begin{align*}
\begin{cases}
 y &= x - 4 \\
 (x + 2)^2 + y^2 &= 4
\end{cases}
\end{align*} \]